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ABSTRACT 
In this paper we propose a new algorithm for 
finding the blocks (biconnected components) of an 
undirected graph. A serial implementation runs in 
O(n+m) time and space on a graph of n vertices and 
m edges. 4 parallel implementation runs in 
O(log n) time and O(n+m) space using O(n+m) 
processors on a concurrent-read, concurrent-write 
parallel RAM. An alternative implementation runs 
in Obn2/p3 time and O(n2) space using any number p 
C n /log n of processors, on a concurrent-read, 
exclusive-write parallel RAM. The latter algorithm 
has optimal speedup, assuming an adjacency matrix 
representation of the input. 

A general algorithmic technique which 
simplifies and improves computation of various 
functions on trees is introduced. This technique 
typically requires o(1og n) time using o(n) 
processors and O(n) space on an exclusive-read 
exclusive-write parallel RAM. 

Keywords: Parallel graph algorithm, biconnected 
components, blocks, spanning tree. 

1. Introduction 

In this paper we consider the problem of 
computing the blocks (biconnected components) of a 
given undirected graph G = (V,E). 4s a model of 
parallel computation, we use a concurrent-read, 
concurrent-write parallel RAM (CRCW PRAM). All the 
processors have access to a common memory and run 
synchronously. Simultaneous reading by several 
processors from the same memory location is allowed 
as well as simultaneous writing. Tn the latter 
case one processor succeeds but we do not know in 
advance which. This model, used for instance in 
[SV 821, is a member of a family of models for 
parallel computation. (See [BH 821, [SV 811, 
[V 83cl.) 

We propose a new algorithm for finding blocks. 
We discuss three implementations of the algorithm: 

1. A linear-time sequential implementation. 

2. 4 parallel implementation using O(log n)  time, 
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O(n+m) space, and O(n4m) processors, where n 
= (VI and m = ( E l .  

3 .  An alternative parallel implementation using 
0 n2/p time, O(n2) space, and any number p < 

uses a concurrent-read, exclusive-write 
parallel RAM (CREW PRAM). This model differs 
from the CRCW PRAM in not allowing 
simultaneous writing by more than one 
processor into the same memory location. The 
speed-up of this implementation is optimal in 
the sense that the time-processor product is 
O(n2), which is the time required by an 
optimal sequential algorithm if the input 
representation is an adjacency matrix. 

n 4 1  /log n of processors. This implementation 

We achieve our results through two new ideas: 

1. A block-finding algorithm that uses any 
spanning tree. The previously known linear-time 
algorithm for finding blocks uses a depth-first 
spanning tree [Ta 721. Depth-first search seems 
to be inherently serial; i.e. there is no 
apparent way to implement it in poly-log parallel 
time. The algorithm uses a reduction from the 
problem of computing biconnected components of the 
input graph to the problem of computing connected 
components of an auxiliary graph. This reduction 
can be computed so efficiently both sequentially 
and in both parallel implementations that the 
efficiencies (time and number of processors) of 
parallel connectivity algorithms become the o n l y  
obstacle to a further improvement in 
implementation 2. This is interesting since 
intuitively the connectivity problem seems easier 
than the biconnectivity problem. 

2. A novel algorithmic technique for parallel 
algorithms on trees. Given a tree, the technique 
uses an Euler tour of a graph obtained from a tree 
by adding a p a r a l l e l  edge f o r  each edge of the 
tree. Therefore, we call it the Euler tour 
technique trees. This technique is very 
powerful. It allows the computation of various 
kinds of informat€on about the tree structure in 
O(log n) time using O(n) processors and O(n) space 
on an exclusive-read exclusive-write parallel RAM. 
(This model differs from the CREW PRAM in not 
allowing simultaneous reading from the same memory 
location.) In the paper we show how to use this 
Euler tour technique in order to compute preorder 
and postorder numbering of the vertices of a tree, 
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number of descendents for all vertices and a number 
of other tree functions. An elegant feature of our 
paper is that these computations are all minor 
variations of the same technique. The previously 
best known general algorithmic technique €or trees 
implies O(log2n) time algorithms and is known by 
the name centroid decomposition. See [M 831 for an 
example where the later technique is applied and 
discussed. It is an interesting exercise to 
observe that the centroid decomposition is the 
backbone in an earlier paper by Winograd [Wi 751. 

Implementation 2 is faster than any of the 
previously known parallel algorithms [SJ 811, 
[Ec 79b1, [TC 841. Eckstein‘s algorithm [Ec 79b] 
uses Q(d log2n) time and O((n+m)/d) processors, 
where d is the diameter of the graph. The first 
(resp. second) algorithm of Savage and Ja’Ja‘ 
[SJ 811 uses O(log2n) (resp. O((1og’n)log k ) time, 

(resp. O(mn+n210g n)) processors. Tsin and Chin‘s 
algorithm [TC 841 matches the bounds of our 
implementation 3. These algorithms use the CREW 
PRAM model, which is somewehat weaker than the CRCW 
PRAM model. However, Eckstein [Ec 79a] and Vishkin 
[V 83al present general simulation methods that 
enable us to run implementation 2 on a CREW PRAM in 
O(log2n) time, without increasing the number of 
processors. On sparse graphs, the resulting 
algorithm uses fewer processors than either our 
implementation 3 or the algorithm of Tsin and Chin. 

Each of our implementations readily implies an 
algorithm for computing bridges in the same time 
and number of processors. This improves on the 
bridge-finding algorithm of Savage and Ja’Ja’ 
[SJ 811, which runs in O(log2n) time using 
O(n210g n) processors. Tsin and Chin’s algorithm 
for bridges matches the bounds of our 
implementation 3. 

where k is the number of blocks, and O(n 4 /log n) 

The idea of reducing the biconnectivity 
problem to a connectivity problem on an auxiliary 
graph was discovered independently by Tsin [Ts 821. 
It is used for Tsin and Chin‘s algorithm that 
matches the bounds o f  our implementation 3. This, 
again, was discovered indepently. However, there 
are two substantial differences between Tsin and 
Chin‘s solution and ours. 

(1) The auxiliary graph in which connectivity has 
to be computed has many more edges than the 
auxiliary graph we use. This causes the following 
problems. It complicates the computation of the 
auxiliary graph and, more important, does not 
permit a fast parallel algorithm using only a 
linear number of processors. An elegant feature of 
our algorithm is that the same reduction is used in 
all three implementations. 

(2) Their computation of preorder, postorder and 
number of descendents on trees takes O(10g n) time 
using n2/log n processors - almost the square of 
the number of processors used here. 

The remainder of the paper consists of four 
sections. In Section 2 we develop the 
block-finding algorithm and give a linear-time 
sequential implementation. In Section 3 we 

describe our O(log n)-time parallel implementation 
and present the Euler tour technique. Section 4 
sketches our alternative parallel implementation. 
Section 5 concludes by reviewing aipplications of 
the Euler tour technique and suggesting some future 
work. 
Note. If a parallel algorithm runs in O(t) time 
using O(p) processors then it also runs in O(t) 
time using p processors. This is because we can 
always save a constant factor in the number of 
processors at the cost of the same constant factor 
in running time. Our stated complexity bounds take 
advantage of this observation. 

Historical Remark. A variant of the block-finding 
algorithm presented here was first discovered by R. 
Tarjan in 1974 [Ta 821. U. Vishkin independently 
rediscovered a similar algorithm in 1983 and 
proposed parallel implementations and the Euler 
tour technique [V 83bl. Subsequent simplification 
by the two authors working together resulted in [TV 
831. Recently, [V 841 proposed further 
amplifications to this technique. Parts from these 
two papers are represented in the present summary. 

- 

2. Finding Blocks 

Let G = (V,E) he a connected undirected graph. 
Let R be the relation on the edges o f  G defined by 
elRe2 if and only if el = a 
common simple cycle of G.e$t is known that R is an 
equivalence relation [Ha 691. The subgraphs of G 
induced by the equivalence classes of R are the 
blocks (sometimes called biconnected components) of 
G. The vertices in two or more blocks are the cut 
vertices (someties called articulation points) of 
G; these are the vertices whose removal disconnects 
G. The edges in singleton equivalence classes are 
the bridges of G; these are the edges whose removal 
disconnects G. (See Figure 1.) 

or el and e2 are on 

[Figure 11 

We can compute the equivalence classes of R, 
and thus the blocks of G, in O(n+m) serial time 
using depth-first search [Ta 721, where n = 1V( and 
m = IE(. Unfortunately, this algorithm seems to 
have no fast parallel implementation. Tn this 
section we develop an O(n4-m)-time serial algorithm 
that is suited for both our parallel 
implementations. The algorithm can use any 
spanning tree, rather than just a depth-first 
spanning tree. 

We shall define an auxiliary graph G’ of G 
whose connected components correspond to the blocks 
of G. The vertices of G’ are the edges of G; if S 
is a set of edges in G, S induces a block of G if 
and only if S induces a connected component of G‘. 
Let T be rooted spanning tree of G. We shall 

-In this paper a cycle is a path starting and 
ending at the same vertex and repeating no edge; a 
cycle is simple if it repeats no vertex except the 
first, which occurs exactly twice. 
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denote the edges of T by v + w, where v is the 
parent of w, denoted by p(w). Let the vertices of 
T be numbered from 1 to n in preorder and identify 
each vertex by its number. G' contains each edge 
of G as a vertex and all edges of the following 
forms (see Figure 2): 

(i) I{u,w) ,~v,w)~, where U + w is an edge of T 
and {v,wI is an edge of G-T such that v < W. 

(ii) {{u,vI,{x,wI}, where U + v and x + w are 
edges of T and {v,w} is an edge of G-T such 
that v and w are unrelated in T. 

(iii) {{u,vI ,{v,wII, where U + v and v + w are 
edges of T and some edge of G joins a 
descendant of w with a nondescendant of v. 

A formal justification for the definition of 
G' is given is Theorem 1 below. Let us give first 
some intuition for this definition. Consider the 
problem of classifying only the edges of T into 
biconnected components of G. Let G" be the subgraph 
of G' which is induced by vertices that correspond 
to edges of T only. The main step of the algorithm 
computes the connected components of G". Here, we 
explain only this step. Consider an edge {u,v) of 
G-T. {u,v) implies that all edges in T on the path 
from U to v are in the same biconnected component 
of G. If U is an ancestor of G then (iii) (in the 
definition of G')  yields connectivity of these 
edges. If U and v are unrelated in T then (iii) 
yields connectivity within two sets of edges in T: 
(1) edges of the path from U to the lowest common 
ancestor of U and v and (2) edges of the path from 
v to the lowest common ancestor of U and V. 
Finally, (ii) yields connectivity between these two 
sets. 

Theorem 1. Two edges of G are in a common block of 
G if and only if as vertices of G '  they are in a 
common connected component of G'. 

Proof. Any edge Ix,y) of G-T defines a simple 
cycle of G, consisting of edge {x,y) and the unique 
path in T joining x and y. These cycles are a cycle 
basis of G; the edge set of any cycle is the 
mod-two sum of the edge sets of appropriate basis 
cycles [Be 731. Define the relation R' by elR'e2 
if and only if el and e2 ar$ two edges of G on a 
common basis cycle, and let R' be the reflexive, 
transitive closure of R'. 

claim R'* = R. Since*R is an equivalence 
relation and R'C R, we have R' To prove the 
converse, suppose elRe2. Then el and e2 are on a 
common simple cycle, which is a mod-two sum of 
basis cycles C1,C2,---,CIc- Without loss of 
generality we can order C ,C2,...,Ck so that Ci for 
i 
such that j < i. (Otherwise the mod-two sum 02 
C1,C2, ..., C would induce a disconnected subgraph.) 
It follows ky induction on k that allx edges in 
C1,C2, ..., Ck are equivalent under R' , and in 
particular elR'*e2. 

We 
5 R. 

> 1 has at least one eage in common with some C 

Thus IZ 5 R**. 

Let Iu,v) and Ix,wI be adjacent in G'. If 
Case (i) holds, 

{u,vI is on the basis cycle defined by x,wI. (In 
this case x = v.) If Case (ii) holds, {u,vI and 
{x,w} are on the basis cycle defined by {v,w}. If 
Case (iii) holds, say {y,d is an edge with y a 
descendant of w and z a nondescendant of v = x, 
then { u,v) and {x,w} are on the basis cycle defined 
by {y,zI. Thus in all cases {u,vI and I x,wI are in 
the same block of G. 

Conversely, let {x,y> be an edge of G-T 
defining a basis cycle consisting of edge {x,yI, 
edges on the tree path from z to x, and edges on 
the tree path from z to y, where z is the nearest 
common ancestor of x and y. Without loss of 
generality suppose x < y. By Case (i), {x,yI and 
{p(y),yl are adjacent in G'. The existence of 
{x,y} implies by Case (iii) that any two edges on 
the tree path from z to x are adjacent in G'. 
Similarly any two edges on the tree path from z to 
y are adjacent. If z = x, the tree path from z to 
x is empty. Otherwise (i.e. z # x), x and y are 
unrelated, and by Case (ii) {p(x),d and Ip(y),y} 
are adjacent in G'. Thus all edges on the basis 
cycle are in the same connected component of G'. 
The theorem follows. 0 

Theorem 1 gives the following O(n+m)-time 
serial algorithm for finding blocks: 

Step 1. Find a spanning tree T of G using any 
linear-time search method. Number the vertices of 
G from 1 to n in preorder and identify each vertex 
by its preorder number. Compute the number of 
descendants g(v) of each vertex v by processing 
the vertices in postorder using the recurrence 
nd(v) = 1 + E {g(w)Iv+w in T I .  (We regard every 
vertex as a descendant of itself.) A vertex w is a 
descendant of another vertex v if and only if v < w 
< v + g(v)-1 [Ta 741 .  

Step 2. For each vertex v, compute -(v), the 
lowest vertex that is either a descendant of v or 
adjacent to a descendant of v by an edge of G-T, 
and =(v), the highest vertex that is either a 
descendant of v or adjacent to a descendant of v by 
an edge of G-T. the complete set of 2n %and 
high vertices can be computed in O(n+m) time by 
processing the vertices of T in postorder using the 
following recurrences: 

- 

- 

- low(v) = min({v) U I&(w>Iv+ w in TI 
U (wlIv,wI in G-TI); 

high(v) = max({vI U {-(w)(ww in TI 
U {wl{v,w} in G-TI 1. 

Step 3. Construct G", the subgraph of G' induced 

those implied by Cases (ii) and (iii).) For each 
edge {w,v) in G-T such that v + g(v) < w, add 
{{p(v),vI, {p(w),w)} to G" (Case ii)). For each 
edge v + w of T such that v # 1 add 
{{p(v),vI ,{v,w)I to G" if -(w) < v or high(w) > v 
+ &(v) (Case (iii)). 

Step 4.  
any kind of linear-time search. 

by the edges of T as follows. (The edges of G" are 

Find the connected components of GI' using 
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Step 5. Extend the equivalence relation on the 
edges of T (the vertices of G") to the edges of G-T 
by defining {v,wl equivalent to {p(w),w) for each 
edge {v,w) of G-T such that v < w (Case (i)). 

-- 

It is easy to implement this algorithm to run 
in O(n+m) time using standard techniques. (See [Ta 
7 2 1 . ) .  If only a serial implementation i s  desired, 
the algorithm can be simplified somewhat. (See [Ta 
821.) The algorithm as presented is designed for 
easy parallel implementation. Note that each edge 
of G-T is a vertex of degree one in G', and G" 
contains n-1 vertices and at most m-1 edges. 

Remark. Although we have assumed that G is 
connected, we can use the algorithm to find the 
blocks of a disconnected graph by applying it to 
each of the connected components (in series in the 
case of the implementation in this section, in 
parallel in the case of the implementations in 
Section 3 or 4 ) .  This does not change the resource 
bounds of the algorithm. 

3 .  E t  Parallel Implementation 

-- 

In this section we describe how to implement 
the block-finding algorithm of Section 2 to run in 
O(log n) time with O(n+m) processors on a CRCW 
PRAM. We shall emphasize the ideas involved, only 
sketching the details. A s  the input 
representation, we assume that the vertex set is 
V = 1,2,. . . ,nl and that each undirected edge { i, j) 
is represented by two directed edges (i,j) and 
(j,i). Each vertex i has a list of its outgoing 
edges: adJ(i) points to the first such edge and 
- next((i,j)) points to the edge after (i,j) on i's 
list. (If there is no such edge, 
- next((i,j)) = 'null'.) Each edge (i,j) also has a 
pointer to its reversal (j,i). Each vertex i and 
each directed edge (i,j) has its own processor, 
denoted by E(i) and E(i,j), respectively. 
Remark. This input representation is the most 
convenient one for our purposes, but it is not the 
only one that will work. For example, we can begin 
with an array of the 2m directed edges in arbitrary 
order and use the O(1og m) time, O(m) processor 
sorting algorithm of Ajtai, r(oml6s, and Szemeredi 
[AKS 831 to sort the edges by first component. 
Once the edges are sorted, it is easy to construct 
incidence lists. Sorting the edges (i,j) 
lexicographically on (min{ i, jl , max{ i, j} ) allows 
the construction of pointers between each edge and 
its reversal. Thus we obtain the desired input 
representation. While the asymptotic running time 
of this sorting algorithm is only O(log m) it 
should be noted that there is a large constant in 
front of the log m. Instead of this algorithm we 
can use the randomized sorting algorithm of Reif 
and Valiant [RV 831. It will sort in time O(log m) 
almost surely using m processors. A third 
possibility is to perform this sorting in time 
O(1og n) and m processors using an adaptation of 
the simple no ion of "orthogonal trees". However, 
this needs O(n ) space. For more information on 
such sorting algorithms see Thompson [Th 831. 

Step 1. Construction of a spanning tree 

z 

-- 

and computation of the preorder number and number 
of descendants of each vertex. 

First we construct an unrooted spanning tree 
by using a modification of the Shiloach-Vishkin 
connected components algorithm [SV 821. We assume 
some familiarity with this algorithm. The 
algorithm maintains for each vertex v a pointer 
D(v). Initially D(v) = v for all vertices V. A s  
the algorithm proceeds, the D-pointers are the 
parent pointers of a forest, each tree of which 
contains vertices known to be in a single connected 
component of the graph. (If v is the root of a 
tree in this 0-forest, D(v) = v.) The TI-pointers 
are changed by two kinds of steps: 

Shortcutting. Replace D(i) by D(D(i)) for some 
vertex i. Such a step changes the structure of the 
D-forest by moving v and its descendaLnts closer to 
the root of its tree, but does not change the 
vertex partition defined by the D-trees. 

Rooking. Replace D(D(i)) by D(j), where D(i) is 
the root of a D-tree, j is a vertex in another 
D-tree, and {i,j) is an edge in the graph. 

We modify the Shiloach-Vishkin algorithm so 
that a l l  the edges are initially marked as non-tree 
edges, and each time a hooking step is performed, 
the corresponding graph edge i, j) is marked as a 
tree edge. When the algorithm finishes, all the 
vertices are in a single D-tree, and the marked 
edges define a spanning tree. The original 
algorithm runs in O(1og n)  time using O(n+m> 
processors; these bounds are not affected by the 
modifications €or computing a spanning tree. 

One detail of this method deserves further 
discussion. Processors corresponding to several 
directed edges (i,j) may simultaneously try to 
write to the same location D(D(i):) to cause a 
hooking, but only one succeeds. In order to keep 
track of which one succeeds, we use an auxiliary 
array a. When a processor E((i,j)) tries to cause 
a hooking step to take place, it first writes its 
name into a(D(i)) by the assignment a(D(i)) + 

- pr((i,j)). For a fixed value of D(:i), only one 
such processor succeeds. The successful processor 
- pr((i, j)) then carries out the actual1 hooking step 
and marks both (i,j) and (j,i). 

Remark. This idea for obtaining :I spanning tree 
from a connected components computai.ion has been 
used before. In particular Savage and Ja'Ja' [SJ 
811 used it to derive a minimum spanning forest 
algorithm from the connectivity algorithm of 
Hirschberg, Chandra and Sarwate [HCS 791. 

Having determined the edges of an unrooted 
spanning tree, we must determine a ]root and number 
the vertices in preorder. First, we construct for 
each vertex i a list of the outgoing edges 
corresponding to tree edges. We can do this in 
O(1og m) = O(1og n) time with O(m) processors by 
using a "doubling" technique [Wy 701.  For each 
edge (i, j), we initialize treenext((i, j)) = - next((i,j)) and then repeat the following step, in 
parallel on all edges (i,j), bog times (until 



none of the treenext values change): if 
treenext((i,j)) is not ‘null‘ and not marked, 

treenext(treenext((i,j))). This takes 0(log m) 
iterations over the edges. Once all the treenext 
values are computed, we define treeadj(i), for each 
vertex i, to be aaj(i) if %(i) is ‘null‘ or 
marked, treenext(adj(i)) otherwise. The treeadj 
and treenext maps define incidence lists f n  
spanning tree. 

replace treenext((i,j)) by 
~- 

Next, we construct a circular list 
corresponding to an Eulerian tour of the directed 
version of the spanning tree. For each edge (i,j), 
the next edge tournext((i,j)) in the tour is 
treenext((j,i)) if treenext((j,i)) is not ’null’, 
treeadj(j) otherwise. This tour corresponds to the 
order of advancing and retreating along edges 
during a depth-first transversal of the tree, 
starting at an arbitrary vertex. To root the tree, 
we break the Euterian tour at an arbitrary edge, 
causing some edge, say (i,j), to be the first edge 
on the list. Vertex i becomes the root of the 
tree. Y e  call the broken list the traversal W. 
This traversal list is the backbone of the Euler 
tour technique that is introduced in this paper. 
In the sequel, we show that this list is the key to 
computing quite a number of functions on the tree. 

We can number the edges of the traversal list 
from 1 to 211-2 in traversal order in 0(log n) time 
with O(n) processors by using the doubling 
technique to compute for each edge (i,j) the number 
of edges from (i,j) to the end of the list. We do 
this by initializing numtoend((i,j)) = 1 and 
- ptr((i,j)) = ‘null’ for a11 (i,j)). Once this 
computation is complete, the number of edge (i,j) 
is 2n-l-numtoend((i,j)). 

Of two edges (i,j) and (j,i), the 
lower-numbered one corresponds to an advance from i 
to j along tree edge {i,j) and the higher-numbered 
one to a retreat from j to i along {i,jl. Using 
the edge numbers, we can thus mark each directed 
edge as either an advance edge or a retreat edge. 
For each vertex j other than the root, there is 
exactly one advance edge (i,j); the parent p(j) of 
j in the tree is i. 

In the traversal list, the advance edges (i,j) 
occur in preorder on j. We can thus number the 
vertices in preorder using doubling, much as we 
computed the edge numbers. The only differences 
are that we initialize numtoend(i,j) to be 1 if 
(i,j) is an advance edge, 0 otherwise, and when the 
computation is  complete, if (i,j) is an advance 
edge, we define n+l - numtoend(i,j) to be the 
preorder number of vertex j. Once preorder numbers 
are computed, we replace each occurrence of a 
vertex by its preorder number, retaining an inverse 
map to restore the original vertex names when the 
computation is complete. (For each number i, we 
remember vertex(i), the vertex with number i.) 

Remark. Although not needed in this paper, a 
similar computation will number the vertices in 
postorder; for each vertex j other than the tree 
root, there is exactly one retreat edge (j,i), and 

the retreat edges appear i n  the traversal list in 
postorder on j. 0 

The last part of Step 1 is the computation of 
the number of descendants g(j) of each vertex j. 
If j is not the tree root, g(j) is just the number 
of advance edges from (p(j),j) to the end of the 
list (including (p(j),j)) minus the number of 
advance edges from (j,p(j)) to the end of the list. 
Two doubling computations, one of which we have 
already done to compute preorder numbers, and a 
parallel subtraction give the number of descendants 
of all the vertices. 

Step 2. 
vertex j. 

Computation of &(j) and w(j) €or each 

We shall describe how to compute low; the 
computat€on of high is similar. Using doubling on 
the adjacency lists, we can compute locallow(j) = 
min( { j} {kl (j,k) is an unmarked (nontree) edge)) 
for each vertex j in O(log n) time using O(m) 
processors. Below, we assume, w.L.g., that n is a 
power of 2. We define an auxiliary value 
globallow[i, j] = min( { locallow(k) 1 i < k 6 3 , 
i.e., ~loballow[i,j] is the minimum of locallow 
over the interval [i,i+l, ...,j 1. For each 0 < a < 
log n we compute globallow of the intervals 
[ (k-1)2a+l,. . . ,k2a] for 1 G k G n/2a. (The total 
number of such intervals is O(n). They have the 
property that any interval [i, ...,j 1 , 1 < i 4 j < 
n , can be represented as a union of at most 210g n 
of them.) 
Initialization. Assign globallow[i,il f 

locallow(i) €or all 1 < i < n. 

for a + 1 5 log n parcto - 
for each 0 < k < (n/2U) - 1 do 

globallo~[k2~+l,(k+l)2~] f- 
min(ball0w[k2~+1 ,(2k-l)P-l , 
-- 

gl0ballow[(2k-l)2~-~+l,(k+l)~ 1) 

This computation takes O(log n) time using n 
processors. (Actually, n/log n processors suffice 
but we shall not discuss it here). 

We 
formula 

compute z ( j )  for each vertex j using the 

low( j )  = mid locallow(k) I j <% j + I&( j)-11 

That is, we compute globallow[j, j + *(j)-l], for 
each vertex j. The computation below uses the 
property that the interval [j, ...,j hA(j)-l] is a 
union of at most 210g n intervals on which 
globallow has already been computed. The variables 
little(j) and &(j) intially mark the endpoints of 
the interval. During the course of the computation 
the interval [little(j),.. .,%(j)I contains the 
subinterval of [ j ,  ...,j+Z (j)-l] that has not yet 
been taken into account in the computation of 
low( j ) .  

- 

- 
for all 2 < j < n pardo -__ 
Initialize: l i t t m  + j;  big( j) + j+g( j)-1; 

low(j) + n +1 (ComGt: This is a __ 
default value) 

for a f 1 to log n do 
if little( j) - 1 is not divisible by Za 
then low(j) + min(=(j), 

- 
-- 
-- 
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It is easy to verify the following. (1) All our 
requests for values of globallow were for intervals 
that have been computed before. (2) The intervals 
that are taken into account in the computation of 
- low( j) really "cover" the interval [ j , .  . . , j+g-1]. 
(3)  The whole computation of Step 2 takes O(log n) 
time using O(n) processors. 

Step 3 .  Construction of the auxiliary graph G". 

This computation requires only O(1) time using 
O(m) processors, since testing the apropriate 
condition for each possible edge of G" takes O ( 1 )  
time. After this test, which takes place in 
parallel, we have a set of at most m-1 processors, 
each o€ which knows an edge of G". 

Step 4 .  Finding the connected components of G". 

We apply the connected components algorithm of 
Shiloach and Vishkin. The information computed in 
step '3 is sufficient as input to this algorithm, 
which takes O(1og n) time and O(n+m) processors. 
Once the algorithm finishes, each vertex (i,j) of 
G" (advance edge of the spanning tree) has a 
D-pointer to a canonical "vertex" (x,y) 
representing the connected component containing 
(i,j). 

Step 5. Extension of the equivalence relation 
found in Step 4 to the edges of G-T. 

For each non-tree edge (i,j) such that i < j, 
we assign D((i,j)) + D((p(j),j)). This takes O ( 1 )  
time and O(m) processors. 

This completes the computation except for 
restoring the original vertex names. An inspection 
of the various steps shows that none uses more than 
O(log m) = O(log n) time, more than O(n+m) ,pace, 
or more than O(n+m) processors. The only place 
concurrent writing is used is in the connected 
components algorithm, used in Steps 1 and 4 .  

4 .  &Alternative Parallel Implementation 

There are two known connected components 
algorithms that run in O(log2n) time using 
O(n2/log2n) processors: the algorithm of Vishkin [V 
811, which runs on a CRCW PRAM, and the algorithm 
of Chin, Lam, and Chen [CLC 811, which runs on a 
CREW PRAM. Although the latter is more 
complicated, we shall use it instead of the former 
in Steps 1 and 4 ,  since it uses a less powerful 
computation model. Chin, Lam, and Chen describe 
how to adapt their algorithm to compute a (minimum) 
spanning forest. 

Step 1. Construction of a spanning tree and 
computation of the preorder number and number of 
descendants of each vertex. 

We apply %he algorithm of Chin, Lam, and Chen 
to mark the entries in the adjacency matrix 
corresponding to tree edges. We can convert each 
row of the adjacency matrix to an incidence list 
for the corresponding vertex (of edges incident in 
the spanning tree) by using a balanced binary tree 
with n leaves to guide the computation. (For each 
marked entry, we need to compute the next marked 
entry in the row.) The computation is similar to a 
standard partial-sum computation and takes O( log%) 
time with O(n/log2n) processors (see €or instance 
[V 811). 4ince we can carry out the computation 
for all rows in parallel, the total time is 
O( log2n) with O(n2/log2n) processors. Establishing 
pointers between each directed edge (i,j) and its 
reverse is easy. Now we have the representation of 
the unrooted spanning tree used in Section 3 .  The 
remainder of Ihe Step 1 computation proceeds as in 
Section 3 ,  taking O(log n) time on O(n) processors. 

Step 2. Computation of low and high. 

Computing locallow(j) requires n arallel 
minimum computations. Each takes O(log n) time 
using O(n/log2n) processors [Wy 791, a total of 
O(n2/log%) processors. The remainder of the low 
computation proceeds as in Section 3 taking O(log 
n) time using O(n) processes. The computation of 
high is similar. 

Step 3 .  Construction of the auxiliary graph G". 

4 

This is easy in O(log2n) time with O(n2/log2n) 
processors. 

Step 4 .  

Step 5. Extension of the equivalence relation 
found in Step 4 to the edges of G-T. 

Finding the connected components of G". 

In this section we develop an implementation 
of the block-finding algorithm that runs in 
O(log2n) time using O(n'/log'n) processors on a processors* 

This is easy in O(log2) time with O(n2/log2n) 

CREW PRAM, assuming that- the -input graph is 
represented by an adjacency matrix. Since we can 5 '  
always trade time for processors, this method gives 
an O(n2/p) time algorithm using p processors, for 
any p 6 n2/log2n. This algorithm has optimal 
speed-up, assuming an ad jacebcy matrix revisited 

5.1 The Euler tour technique for trees 

.. 

representation of Ehe input. -We shall not go We presented the Euler tour technique for through the details of the implementation but 
merely mention where it differs from the O(1og trees in the paper- A non-trivia1 contribution of this paper is the wide n)-time implementation of the previous section. 

applicability of this technique. Let T be an 
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undirected tree having n vertices. In this 
concluding section we mention a few functions on T 
that the Euler tour technique can be applied €or 
their computation. Thereby, we support our claim 
that this technique is powerful. A l l  algorithms 
mentioned in this section run in O(log n) time 
using O(n) space and n processors on the RREW PRAM 
model of computation. 

Function 1. Compute H, a directed version of - -  
T which is rooted at some vertex r. 

The algorithm was given in Section 3. 

Whenever we refer in this paper to the Euler 
tour technique on trees we refer to utilizations of 
the traversal list given in Section 3. For better 
understanding of the amount of information hidden 
in this Euler path it is helpful to think about 
each directed edge f of H as a left parenthesis and 
its anti-parallel edge as a right parenthesis. The 
Euler path will then correspond to a legal sequence 
of parentheses, where matching pairs of parentheses 
will represent the two copies of an edge of T. 

Function 2. Compute preorder numbering of the ~- 
vertices of H. 

Algorithm: See Section 3. 

Function 3. Compute postorder numbering of ~- 
the vertices of H. 

Algorithm: See Section 3. 

Function 4 .  Compute levels of the vertices of 
H. That is, for each vertex in H find the length of 
the path from r to it. 

-- 

Finding this algorithm is simple. It is left 
to the reader. 

Function 4 .  Number of descendents of the ~- 
vertices in H. 

Algorithm: See Section 3. 

Function 5. Lowest common ancestor (LCA) of 
two vertices in H. We used the Euler path to form a 
data-structure which enables retrieval of the LCA 
of any pair of vertices in O(log n) time by a 
single processor. see [V 841. 

Function 6 .  low(v) for every vertex v in G .  
Where-isdef ined as the the minimum preorder 
numberover: v, descendents of v and vertices 
adjacent to a descendent of v by an edge of G-T. 

Algorithm: See Section 3 .  

-- Function 7. high(v) for every vertex v in G. 
Where high(~) i s  defined as the the maximum 
preorder number over: v,  descendents of v and 
vertices adjacent to a descendent of v by an edge 
of G-T. 

Algorithm: See Section 3. (Recall that the 
computation of the last two functions plays an 
important role in our hiconnectivity algorithm). 

[ A I S  841 and [AV 831 gave (independently from 
each other) algorithms for finding Euler tours in 
general Ruler graphs. The present paper preceded 
both [AIS 841 and [AV 531 and is more fundamental 
than them. While there is no apparent way in which 
the present paper can henefit from these papers, 
[ A V  831 indicates how to apply ideas of the present 
paper for substantial simplification of the 
algorithm for finding Euler tours (with respect to 
the algorithm of [AIS 8 4 1 )  

5.2 Future work 

We close this section and the paper with a few 
remarks about future work. The parallel tree 
computations used in Section 3 may have 
applications in other graph algorithms. This 
deserves study. A l s o ,  there are still open 
problems concerning parallel hiconnectivity 
algorithms. The algorithm of Section 4 ,  as does 
the algorithm of Tsin and Chin [TC 841 ,  has optimal 
speed-up €or dense graphs but not €or sparse ones, 
whereas the algorithm of Section 3 is off by a 
factor of log n from optimal speed-up. A question 
worth exploring is whether there is an O((n+m)/p) 
time algorithm using p processors, for p 
sufficiently small (say ~':(n+m)/logL or p~ 
(n+m)/logn.) Such an algorithm is unknown even for 
the problem of computing connected components. 

Suppose that an algorithm of time O((n+m)/p) 
could be found for the problem of computing 
connected components. Then the implementation of 
Section 3 implies a block-finding algorithm of time 
O((n1og n + m)/p) using p < nlog n + m processors, 
provided we are given a proper input 
representation. In order to see this, consider the 
following representation o f  the input graph for the 
block-finding problem. The vertex set is V = 
{1,2, ..., n}. Each edge {i,j} is represented by two 
directed edges (i,j) and (j,i). The 2m directed 
edges of the graph appear in an ascending 
lexicographic order in a vector of length 2m. 
(That is, (il,jl) < (i2,!2) if il < I2 or il =.i2 
and j, < j2. Each vertex 1 has a pointer to its 
first outgoing edge. The implementation of Section 
3 still requires the following modifiction. Recall 
the construction of the list of outgoing edges in 
the tree for every vertex. This was done using 
doubling which required O(log n) time using only 
O(m/log m) processors. Instead, we construct a 
sorted vector (similar to the input vector) of 
length 211-2 which contains all directed edges of 
the tree in time O(log n) using O(m) processors: 
For each directed edge in the tree we need to find 
its serial number relative to the other directed 
edge of the tree. We use a balanced binary tree 
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with 2m leaves, one for each input directed edge, 
to guide the computation, which is a standard 
partial sum computation where each active leaf 
enters one and gets in return its serial number 
relative to other active leaves. This is similar 
to the computation following Step 1 of the previous 
section. A similar remark applies to the 
computation of locallow(j) (just before the 
construction of the tree). 
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1 l(1.11) 

(a 

2 3 

Figure 1 .  (a) An undirected graph. 
(b) Its blocks. Vertices 4,5,6 

and 7 are cut vertices. 
Edges { 6 , 7 1 ,  { 5 , 1 0 1 ,  and 
{ 5 , 1 1 )  are bridges. 

(11.11) 
8 ( 8 ,  

Figure 2. 
(a) A spanning tree of the graph in Figure 1. 

Dashed edges are non-tree edges. Vertices 
are numbered in preorder. Numbers in 
parentheses are the low and high number 
of each vertex. 

(b)  The auxiliary graph 6 ' .  
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