
FINDING BICONNECTED COMPONEMTS AND COMPUTING TREE FUNCTIONS IN
LOGARITHMIC PARALLEL TIME

Extended Summary

Robert E. Tarjan* - Uzi Vishkin**

* AT&T Bell Laboratories, Murray Hill, NJ 07974.
Courant Institute, New York University and (present address) Department of Computer Science, **

Tel Aviv University, Tel Aviv 69 978, Israel.
ABSTRACT
In this paper we propose a new algorithm for
finding the blocks (biconnected components) of an
undirected graph. A serial implementation runs in
O(n+m) time and space on a graph of n vertices and
m edges. 4 parallel implementation runs in
O(log n) time and O(n+m) space using O(n+m)
processors on a concurrent-read, concurrent-write
parallel RAM. An alternative implementation runs
in Obn2/p3 time and O(n2) space using any number p
C n /log n of processors, on a concurrent-read,
exclusive-write parallel RAM. The latter algorithm
has optimal speedup, assuming an adjacency matrix
representation of the input.

A general algorithmic technique which
simplifies and improves computation of various
functions on trees is introduced. This technique
typically requires o(1og n) time using o(n)
processors and O(n) space on an exclusive-read
exclusive-write parallel RAM.

Keywords: Parallel graph algorithm, biconnected
components, blocks, spanning tree.

1. Introduction

In this paper we consider the problem of
computing the blocks (biconnected components) of a
given undirected graph G = (V,E). 4s a model of
parallel computation, we use a concurrent-read,
concurrent-write parallel RAM (CRCW PRAM). All the
processors have access to a common memory and run
synchronously. Simultaneous reading by several
processors from the same memory location is allowed
as well as simultaneous writing. Tn the latter
case one processor succeeds but we do not know in
advance which. This model, used for instance in
[SV 821, is a member of a family of models for
parallel computation. (See [BH 821, [SV 811,
[V 83cl.)

We propose a new algorithm for finding blocks.
We discuss three implementations of the algorithm:

1. A linear-time sequential implementation.

2. 4 parallel implementation using O(log n) time,

The research of the second author was
supported by DOE grant DE-AC02-76ER03077 and
by NSF grant NSF-MCS79-21258.

O(n+m) space, and O(n4m) processors, where n
= (VI and m = (E l .

3 . An alternative parallel implementation using
0 n2/p time, O(n2) space, and any number p <

uses a concurrent-read, exclusive-write
parallel RAM (CREW PRAM). This model differs
from the CRCW PRAM in not allowing
simultaneous writing by more than one
processor into the same memory location. The
speed-up of this implementation is optimal in
the sense that the time-processor product is
O(n2), which is the time required by an
optimal sequential algorithm if the input
representation is an adjacency matrix.

n 4 1 /log n of processors. This implementation

We achieve our results through two new ideas:

1. A block-finding algorithm that uses any
spanning tree. The previously known linear-time
algorithm for finding blocks uses a depth-first
spanning tree [Ta 721. Depth-first search seems
to be inherently serial; i.e. there is no
apparent way to implement it in poly-log parallel
time. The algorithm uses a reduction from the
problem of computing biconnected components of the
input graph to the problem of computing connected
components of an auxiliary graph. This reduction
can be computed so efficiently both sequentially
and in both parallel implementations that the
efficiencies (time and number of processors) of
parallel connectivity algorithms become the o n l y
obstacle to a further improvement in
implementation 2. This is interesting since
intuitively the connectivity problem seems easier
than the biconnectivity problem.

2. A novel algorithmic technique for parallel
algorithms on trees. Given a tree, the technique
uses an Euler tour of a graph obtained from a tree
by adding a p a r a l l e l edge f o r each edge of the
tree. Therefore, we call it the Euler tour
technique trees. This technique is very
powerful. It allows the computation of various
kinds of informat€on about the tree structure in
O(log n) time using O(n) processors and O(n) space
on an exclusive-read exclusive-write parallel RAM.
(This model differs from the CREW PRAM in not
allowing simultaneous reading from the same memory
location.) In the paper we show how to use this
Euler tour technique in order to compute preorder
and postorder numbering of the vertices of a tree,

0272-5428/84/0000/0012$01.00 0 1984 IEEE
12

number of descendents for all vertices and a number
of other tree functions. An elegant feature of our
paper is that these computations are all minor
variations of the same technique. The previously
best known general algorithmic technique €or trees
implies O(log2n) time algorithms and is known by
the name centroid decomposition. See [M 831 for an
example where the later technique is applied and
discussed. It is an interesting exercise to
observe that the centroid decomposition is the
backbone in an earlier paper by Winograd [Wi 751.

Implementation 2 is faster than any of the
previously known parallel algorithms [SJ 811,
[Ec 79b1, [TC 841. Eckstein‘s algorithm [Ec 79b]
uses Q(d log2n) time and O((n+m)/d) processors,
where d is the diameter of the graph. The first
(resp. second) algorithm of Savage and Ja’Ja‘
[SJ 811 uses O(log2n) (resp. O((1og’n)log k) time,

(resp. O(mn+n210g n)) processors. Tsin and Chin‘s
algorithm [TC 841 matches the bounds of our
implementation 3. These algorithms use the CREW
PRAM model, which is somewehat weaker than the CRCW
PRAM model. However, Eckstein [Ec 79a] and Vishkin
[V 83al present general simulation methods that
enable us to run implementation 2 on a CREW PRAM in
O(log2n) time, without increasing the number of
processors. On sparse graphs, the resulting
algorithm uses fewer processors than either our
implementation 3 or the algorithm of Tsin and Chin.

Each of our implementations readily implies an
algorithm for computing bridges in the same time
and number of processors. This improves on the
bridge-finding algorithm of Savage and Ja’Ja’
[SJ 811, which runs in O(log2n) time using
O(n210g n) processors. Tsin and Chin’s algorithm
for bridges matches the bounds of our
implementation 3.

where k is the number of blocks, and O(n 4 /log n)

The idea of reducing the biconnectivity
problem to a connectivity problem on an auxiliary
graph was discovered independently by Tsin [Ts 821.
It is used for Tsin and Chin‘s algorithm that
matches the bounds o f our implementation 3. This,
again, was discovered indepently. However, there
are two substantial differences between Tsin and
Chin‘s solution and ours.

(1) The auxiliary graph in which connectivity has
to be computed has many more edges than the
auxiliary graph we use. This causes the following
problems. It complicates the computation of the
auxiliary graph and, more important, does not
permit a fast parallel algorithm using only a
linear number of processors. An elegant feature of
our algorithm is that the same reduction is used in
all three implementations.

(2) Their computation of preorder, postorder and
number of descendents on trees takes O(10g n) time
using n2/log n processors - almost the square of
the number of processors used here.

The remainder of the paper consists of four
sections. In Section 2 we develop the
block-finding algorithm and give a linear-time
sequential implementation. In Section 3 we

describe our O(log n)-time parallel implementation
and present the Euler tour technique. Section 4
sketches our alternative parallel implementation.
Section 5 concludes by reviewing aipplications of
the Euler tour technique and suggesting some future
work.
Note. If a parallel algorithm runs in O(t) time
using O(p) processors then it also runs in O(t)
time using p processors. This is because we can
always save a constant factor in the number of
processors at the cost of the same constant factor
in running time. Our stated complexity bounds take
advantage of this observation.

Historical Remark. A variant of the block-finding
algorithm presented here was first discovered by R.
Tarjan in 1974 [Ta 821. U. Vishkin independently
rediscovered a similar algorithm in 1983 and
proposed parallel implementations and the Euler
tour technique [V 83bl. Subsequent simplification
by the two authors working together resulted in [TV
831. Recently, [V 841 proposed further
amplifications to this technique. Parts from these
two papers are represented in the present summary.

-

2. Finding Blocks

Let G = (V,E) he a connected undirected graph.
Let R be the relation on the edges o f G defined by
elRe2 if and only if el = a
common simple cycle of G.e$t is known that R is an
equivalence relation [Ha 691. The subgraphs of G
induced by the equivalence classes of R are the
blocks (sometimes called biconnected components) of
G. The vertices in two or more blocks are the cut
vertices (someties called articulation points) of
G; these are the vertices whose removal disconnects
G. The edges in singleton equivalence classes are
the bridges of G; these are the edges whose removal
disconnects G. (See Figure 1.)

or el and e2 are on

[Figure 11

We can compute the equivalence classes of R,
and thus the blocks of G, in O(n+m) serial time
using depth-first search [Ta 721, where n = 1V(and
m = IE(. Unfortunately, this algorithm seems to
have no fast parallel implementation. Tn this
section we develop an O(n4-m)-time serial algorithm
that is suited for both our parallel
implementations. The algorithm can use any
spanning tree, rather than just a depth-first
spanning tree.

We shall define an auxiliary graph G’ of G
whose connected components correspond to the blocks
of G. The vertices of G’ are the edges of G; if S
is a set of edges in G, S induces a block of G if
and only if S induces a connected component of G‘.
Let T be rooted spanning tree of G. We shall

-In this paper a cycle is a path starting and
ending at the same vertex and repeating no edge; a
cycle is simple if it repeats no vertex except the
first, which occurs exactly twice.

13

denote the edges of T by v + w, where v is the
parent of w, denoted by p(w). Let the vertices of
T be numbered from 1 to n in preorder and identify
each vertex by its number. G' contains each edge
of G as a vertex and all edges of the following
forms (see Figure 2):

(i) I{u,w) ,~v,w)~, where U + w is an edge of T
and {v,wI is an edge of G-T such that v < W.

(ii) {{u,vI,{x,wI}, where U + v and x + w are
edges of T and {v,w} is an edge of G-T such
that v and w are unrelated in T.

(iii) {{u,vI ,{v,wII, where U + v and v + w are
edges of T and some edge of G joins a
descendant of w with a nondescendant of v.

A formal justification for the definition of
G' is given is Theorem 1 below. Let us give first
some intuition for this definition. Consider the
problem of classifying only the edges of T into
biconnected components of G. Let G" be the subgraph
of G' which is induced by vertices that correspond
to edges of T only. The main step of the algorithm
computes the connected components of G". Here, we
explain only this step. Consider an edge {u,v) of
G-T. {u,v) implies that all edges in T on the path
from U to v are in the same biconnected component
of G. If U is an ancestor of G then (iii) (in the
definition of G') yields connectivity of these
edges. If U and v are unrelated in T then (iii)
yields connectivity within two sets of edges in T:
(1) edges of the path from U to the lowest common
ancestor of U and v and (2) edges of the path from
v to the lowest common ancestor of U and V.
Finally, (ii) yields connectivity between these two
sets.

Theorem 1. Two edges of G are in a common block of
G if and only if as vertices of G ' they are in a
common connected component of G'.

Proof. Any edge Ix,y) of G-T defines a simple
cycle of G, consisting of edge {x,y) and the unique
path in T joining x and y. These cycles are a cycle
basis of G; the edge set of any cycle is the
mod-two sum of the edge sets of appropriate basis
cycles [Be 731. Define the relation R' by elR'e2
if and only if el and e2 ar$ two edges of G on a
common basis cycle, and let R' be the reflexive,
transitive closure of R'.

claim R'* = R. Since*R is an equivalence
relation and R'C R, we have R' To prove the
converse, suppose elRe2. Then el and e2 are on a
common simple cycle, which is a mod-two sum of
basis cycles C1,C2,---,CIc- Without loss of
generality we can order C ,C2,...,Ck so that Ci for
i
such that j < i. (Otherwise the mod-two sum 02
C1,C2, ..., C would induce a disconnected subgraph.)
It follows ky induction on k that allx edges in
C1,C2, ..., Ck are equivalent under R' , and in
particular elR'*e2.

We
5 R.

> 1 has at least one eage in common with some C

Thus IZ 5 R**.

Let Iu,v) and Ix,wI be adjacent in G'. If
Case (i) holds,

{u,vI is on the basis cycle defined by x,wI. (In
this case x = v.) If Case (ii) holds, {u,vI and
{x,w} are on the basis cycle defined by {v,w}. If
Case (iii) holds, say {y,d is an edge with y a
descendant of w and z a nondescendant of v = x,
then { u,v) and {x,w} are on the basis cycle defined
by {y,zI. Thus in all cases {u,vI and I x,wI are in
the same block of G.

Conversely, let {x,y> be an edge of G-T
defining a basis cycle consisting of edge {x,yI,
edges on the tree path from z to x, and edges on
the tree path from z to y, where z is the nearest
common ancestor of x and y. Without loss of
generality suppose x < y. By Case (i), {x,yI and
{p(y),yl are adjacent in G'. The existence of
{x,y} implies by Case (iii) that any two edges on
the tree path from z to x are adjacent in G'.
Similarly any two edges on the tree path from z to
y are adjacent. If z = x, the tree path from z to
x is empty. Otherwise (i.e. z # x), x and y are
unrelated, and by Case (ii) {p(x),d and Ip(y),y}
are adjacent in G'. Thus all edges on the basis
cycle are in the same connected component of G'.
The theorem follows. 0

Theorem 1 gives the following O(n+m)-time
serial algorithm for finding blocks:

Step 1. Find a spanning tree T of G using any
linear-time search method. Number the vertices of
G from 1 to n in preorder and identify each vertex
by its preorder number. Compute the number of
descendants g(v) of each vertex v by processing
the vertices in postorder using the recurrence
nd(v) = 1 + E {g(w)Iv+w in T I . (We regard every
vertex as a descendant of itself.) A vertex w is a
descendant of another vertex v if and only if v < w
< v + g(v)-1 [Ta 741 .

Step 2. For each vertex v, compute -(v), the
lowest vertex that is either a descendant of v or
adjacent to a descendant of v by an edge of G-T,
and =(v), the highest vertex that is either a
descendant of v or adjacent to a descendant of v by
an edge of G-T. the complete set of 2n %and
high vertices can be computed in O(n+m) time by
processing the vertices of T in postorder using the
following recurrences:

-

-

- low(v) = min({v) U I&(w>Iv+ w in TI
U (wlIv,wI in G-TI);

high(v) = max({vI U {-(w)(ww in TI
U {wl{v,w} in G-TI 1.

Step 3. Construct G", the subgraph of G' induced

those implied by Cases (ii) and (iii).) For each
edge {w,v) in G-T such that v + g(v) < w, add
{{p(v),vI, {p(w),w)} to G" (Case ii)). For each
edge v + w of T such that v # 1 add
{{p(v),vI ,{v,w)I to G" if -(w) < v or high(w) > v
+ &(v) (Case (iii)).

Step 4.
any kind of linear-time search.

by the edges of T as follows. (The edges of G" are

Find the connected components of GI' using

14

Step 5. Extend the equivalence relation on the
edges of T (the vertices of G") to the edges of G-T
by defining {v,wl equivalent to {p(w),w) for each
edge {v,w) of G-T such that v < w (Case (i)).

--

It is easy to implement this algorithm to run
in O(n+m) time using standard techniques. (See [Ta
7 2 1 .) . If only a serial implementation i s desired,
the algorithm can be simplified somewhat. (See [Ta
821.) The algorithm as presented is designed for
easy parallel implementation. Note that each edge
of G-T is a vertex of degree one in G', and G"
contains n-1 vertices and at most m-1 edges.

Remark. Although we have assumed that G is
connected, we can use the algorithm to find the
blocks of a disconnected graph by applying it to
each of the connected components (in series in the
case of the implementation in this section, in
parallel in the case of the implementations in
Section 3 or 4) . This does not change the resource
bounds of the algorithm.

3 . E t Parallel Implementation

--

In this section we describe how to implement
the block-finding algorithm of Section 2 to run in
O(log n) time with O(n+m) processors on a CRCW
PRAM. We shall emphasize the ideas involved, only
sketching the details. A s the input
representation, we assume that the vertex set is
V = 1,2,. . . ,nl and that each undirected edge { i, j)
is represented by two directed edges (i,j) and
(j,i). Each vertex i has a list of its outgoing
edges: adJ(i) points to the first such edge and
- next((i,j)) points to the edge after (i,j) on i's
list. (If there is no such edge,
- next((i,j)) = 'null'.) Each edge (i,j) also has a
pointer to its reversal (j,i). Each vertex i and
each directed edge (i,j) has its own processor,
denoted by E(i) and E(i,j), respectively.
Remark. This input representation is the most
convenient one for our purposes, but it is not the
only one that will work. For example, we can begin
with an array of the 2m directed edges in arbitrary
order and use the O(1og m) time, O(m) processor
sorting algorithm of Ajtai, r(oml6s, and Szemeredi
[AKS 831 to sort the edges by first component.
Once the edges are sorted, it is easy to construct
incidence lists. Sorting the edges (i,j)
lexicographically on (min{ i, jl , max{ i, j}) allows
the construction of pointers between each edge and
its reversal. Thus we obtain the desired input
representation. While the asymptotic running time
of this sorting algorithm is only O(log m) it
should be noted that there is a large constant in
front of the log m. Instead of this algorithm we
can use the randomized sorting algorithm of Reif
and Valiant [RV 831. It will sort in time O(log m)
almost surely using m processors. A third
possibility is to perform this sorting in time
O(1og n) and m processors using an adaptation of
the simple no ion of "orthogonal trees". However,
this needs O(n) space. For more information on
such sorting algorithms see Thompson [Th 831.

Step 1. Construction of a spanning tree

z

--

and computation of the preorder number and number
of descendants of each vertex.

First we construct an unrooted spanning tree
by using a modification of the Shiloach-Vishkin
connected components algorithm [SV 821. We assume
some familiarity with this algorithm. The
algorithm maintains for each vertex v a pointer
D(v). Initially D(v) = v for all vertices V. A s
the algorithm proceeds, the D-pointers are the
parent pointers of a forest, each tree of which
contains vertices known to be in a single connected
component of the graph. (If v is the root of a
tree in this 0-forest, D(v) = v.) The TI-pointers
are changed by two kinds of steps:

Shortcutting. Replace D(i) by D(D(i)) for some
vertex i. Such a step changes the structure of the
D-forest by moving v and its descendaLnts closer to
the root of its tree, but does not change the
vertex partition defined by the D-trees.

Rooking. Replace D(D(i)) by D(j), where D(i) is
the root of a D-tree, j is a vertex in another
D-tree, and {i,j) is an edge in the graph.

We modify the Shiloach-Vishkin algorithm so
that a l l the edges are initially marked as non-tree
edges, and each time a hooking step is performed,
the corresponding graph edge i, j) is marked as a
tree edge. When the algorithm finishes, all the
vertices are in a single D-tree, and the marked
edges define a spanning tree. The original
algorithm runs in O(1og n) time using O(n+m>
processors; these bounds are not affected by the
modifications €or computing a spanning tree.

One detail of this method deserves further
discussion. Processors corresponding to several
directed edges (i,j) may simultaneously try to
write to the same location D(D(i):) to cause a
hooking, but only one succeeds. In order to keep
track of which one succeeds, we use an auxiliary
array a. When a processor E((i,j)) tries to cause
a hooking step to take place, it first writes its
name into a(D(i)) by the assignment a(D(i)) +

- pr((i,j)). For a fixed value of D(:i), only one
such processor succeeds. The successful processor
- pr((i, j)) then carries out the actual1 hooking step
and marks both (i,j) and (j,i).

Remark. This idea for obtaining :I spanning tree
from a connected components computai.ion has been
used before. In particular Savage and Ja'Ja' [SJ
811 used it to derive a minimum spanning forest
algorithm from the connectivity algorithm of
Hirschberg, Chandra and Sarwate [HCS 791.

Having determined the edges of an unrooted
spanning tree, we must determine a]root and number
the vertices in preorder. First, we construct for
each vertex i a list of the outgoing edges
corresponding to tree edges. We can do this in
O(1og m) = O(1og n) time with O(m) processors by
using a "doubling" technique [Wy 701. For each
edge (i, j), we initialize treenext((i, j)) = - next((i,j)) and then repeat the following step, in
parallel on all edges (i,j), bog times (until

none of the treenext values change): if
treenext((i,j)) is not ‘null‘ and not marked,

treenext(treenext((i,j))). This takes 0(log m)
iterations over the edges. Once all the treenext
values are computed, we define treeadj(i), for each
vertex i, to be aaj(i) if %(i) is ‘null‘ or
marked, treenext(adj(i)) otherwise. The treeadj
and treenext maps define incidence lists f n
spanning tree.

replace treenext((i,j)) by
~-

Next, we construct a circular list
corresponding to an Eulerian tour of the directed
version of the spanning tree. For each edge (i,j),
the next edge tournext((i,j)) in the tour is
treenext((j,i)) if treenext((j,i)) is not ’null’,
treeadj(j) otherwise. This tour corresponds to the
order of advancing and retreating along edges
during a depth-first transversal of the tree,
starting at an arbitrary vertex. To root the tree,
we break the Euterian tour at an arbitrary edge,
causing some edge, say (i,j), to be the first edge
on the list. Vertex i becomes the root of the
tree. Y e call the broken list the traversal W.
This traversal list is the backbone of the Euler
tour technique that is introduced in this paper.
In the sequel, we show that this list is the key to
computing quite a number of functions on the tree.

We can number the edges of the traversal list
from 1 to 211-2 in traversal order in 0(log n) time
with O(n) processors by using the doubling
technique to compute for each edge (i,j) the number
of edges from (i,j) to the end of the list. We do
this by initializing numtoend((i,j)) = 1 and
- ptr((i,j)) = ‘null’ for a11 (i,j)). Once this
computation is complete, the number of edge (i,j)
is 2n-l-numtoend((i,j)).

Of two edges (i,j) and (j,i), the
lower-numbered one corresponds to an advance from i
to j along tree edge {i,j) and the higher-numbered
one to a retreat from j to i along {i,jl. Using
the edge numbers, we can thus mark each directed
edge as either an advance edge or a retreat edge.
For each vertex j other than the root, there is
exactly one advance edge (i,j); the parent p(j) of
j in the tree is i.

In the traversal list, the advance edges (i,j)
occur in preorder on j. We can thus number the
vertices in preorder using doubling, much as we
computed the edge numbers. The only differences
are that we initialize numtoend(i,j) to be 1 if
(i,j) is an advance edge, 0 otherwise, and when the
computation is complete, if (i,j) is an advance
edge, we define n+l - numtoend(i,j) to be the
preorder number of vertex j. Once preorder numbers
are computed, we replace each occurrence of a
vertex by its preorder number, retaining an inverse
map to restore the original vertex names when the
computation is complete. (For each number i, we
remember vertex(i), the vertex with number i.)

Remark. Although not needed in this paper, a
similar computation will number the vertices in
postorder; for each vertex j other than the tree
root, there is exactly one retreat edge (j,i), and

the retreat edges appear i n the traversal list in
postorder on j. 0

The last part of Step 1 is the computation of
the number of descendants g(j) of each vertex j.
If j is not the tree root, g(j) is just the number
of advance edges from (p(j),j) to the end of the
list (including (p(j),j)) minus the number of
advance edges from (j,p(j)) to the end of the list.
Two doubling computations, one of which we have
already done to compute preorder numbers, and a
parallel subtraction give the number of descendants
of all the vertices.

Step 2.
vertex j.

Computation of &(j) and w(j) €or each

We shall describe how to compute low; the
computat€on of high is similar. Using doubling on
the adjacency lists, we can compute locallow(j) =
min({ j} {kl (j,k) is an unmarked (nontree) edge))
for each vertex j in O(log n) time using O(m)
processors. Below, we assume, w.L.g., that n is a
power of 2. We define an auxiliary value
globallow[i, j] = min({ locallow(k) 1 i < k 6 3 ,
i.e., ~loballow[i,j] is the minimum of locallow
over the interval [i,i+l, ...,j 1. For each 0 < a <
log n we compute globallow of the intervals
[(k-1)2a+l,. . . ,k2a] for 1 G k G n/2a. (The total
number of such intervals is O(n). They have the
property that any interval [i, ...,j 1 , 1 < i 4 j <
n , can be represented as a union of at most 210g n
of them.)
Initialization. Assign globallow[i,il f

locallow(i) €or all 1 < i < n.

for a + 1 5 log n parcto -
for each 0 < k < (n/2U) - 1 do

globallo~[k2~+l,(k+l)2~] f-
min(ball0w[k2~+1 ,(2k-l)P-l ,
--

gl0ballow[(2k-l)2~-~+l,(k+l)~ 1)

This computation takes O(log n) time using n
processors. (Actually, n/log n processors suffice
but we shall not discuss it here).

We
formula

compute z (j) for each vertex j using the

low(j) = mid locallow(k) I j <% j + I&(j)-11

That is, we compute globallow[j, j + *(j)-l], for
each vertex j. The computation below uses the
property that the interval [j, ...,j hA(j)-l] is a
union of at most 210g n intervals on which
globallow has already been computed. The variables
little(j) and &(j) intially mark the endpoints of
the interval. During the course of the computation
the interval [little(j),.. .,%(j)I contains the
subinterval of [j , ...,j+Z (j)-l] that has not yet
been taken into account in the computation of
low(j) .

-

-
for all 2 < j < n pardo -__
Initialize: l i t t m + j; big(j) + j+g(j)-1;

low(j) + n +1 (ComGt: This is a __
default value)

for a f 1 to log n do
if little(j) - 1 is not divisible by Za
then low(j) + min(=(j),

-
--
--

I6

It is easy to verify the following. (1) All our
requests for values of globallow were for intervals
that have been computed before. (2) The intervals
that are taken into account in the computation of
- low(j) really "cover" the interval [j , . . . , j+g-1].
(3) The whole computation of Step 2 takes O(log n)
time using O(n) processors.

Step 3 . Construction of the auxiliary graph G".

This computation requires only O(1) time using
O(m) processors, since testing the apropriate
condition for each possible edge of G" takes O (1)
time. After this test, which takes place in
parallel, we have a set of at most m-1 processors,
each o€ which knows an edge of G".

Step 4 . Finding the connected components of G".

We apply the connected components algorithm of
Shiloach and Vishkin. The information computed in
step '3 is sufficient as input to this algorithm,
which takes O(1og n) time and O(n+m) processors.
Once the algorithm finishes, each vertex (i,j) of
G" (advance edge of the spanning tree) has a
D-pointer to a canonical "vertex" (x,y)
representing the connected component containing
(i,j).

Step 5. Extension of the equivalence relation
found in Step 4 to the edges of G-T.

For each non-tree edge (i,j) such that i < j,
we assign D((i,j)) + D((p(j),j)). This takes O (1)
time and O(m) processors.

This completes the computation except for
restoring the original vertex names. An inspection
of the various steps shows that none uses more than
O(log m) = O(log n) time, more than O(n+m) ,pace,
or more than O(n+m) processors. The only place
concurrent writing is used is in the connected
components algorithm, used in Steps 1 and 4 .

4 . &Alternative Parallel Implementation

There are two known connected components
algorithms that run in O(log2n) time using
O(n2/log2n) processors: the algorithm of Vishkin [V
811, which runs on a CRCW PRAM, and the algorithm
of Chin, Lam, and Chen [CLC 811, which runs on a
CREW PRAM. Although the latter is more
complicated, we shall use it instead of the former
in Steps 1 and 4 , since it uses a less powerful
computation model. Chin, Lam, and Chen describe
how to adapt their algorithm to compute a (minimum)
spanning forest.

Step 1. Construction of a spanning tree and
computation of the preorder number and number of
descendants of each vertex.

We apply %he algorithm of Chin, Lam, and Chen
to mark the entries in the adjacency matrix
corresponding to tree edges. We can convert each
row of the adjacency matrix to an incidence list
for the corresponding vertex (of edges incident in
the spanning tree) by using a balanced binary tree
with n leaves to guide the computation. (For each
marked entry, we need to compute the next marked
entry in the row.) The computation is similar to a
standard partial-sum computation and takes O(log%)
time with O(n/log2n) processors (see €or instance
[V 811). 4ince we can carry out the computation
for all rows in parallel, the total time is
O(log2n) with O(n2/log2n) processors. Establishing
pointers between each directed edge (i,j) and its
reverse is easy. Now we have the representation of
the unrooted spanning tree used in Section 3 . The
remainder of Ihe Step 1 computation proceeds as in
Section 3 , taking O(log n) time on O(n) processors.

Step 2. Computation of low and high.

Computing locallow(j) requires n arallel
minimum computations. Each takes O(log n) time
using O(n/log2n) processors [Wy 791, a total of
O(n2/log%) processors. The remainder of the low
computation proceeds as in Section 3 taking O(log
n) time using O(n) processes. The computation of
high is similar.

Step 3 . Construction of the auxiliary graph G".

4

This is easy in O(log2n) time with O(n2/log2n)
processors.

Step 4 .

Step 5. Extension of the equivalence relation
found in Step 4 to the edges of G-T.

Finding the connected components of G".

In this section we develop an implementation
of the block-finding algorithm that runs in
O(log2n) time using O(n'/log'n) processors on a processors*

This is easy in O(log2) time with O(n2/log2n)

CREW PRAM, assuming that- the -input graph is
represented by an adjacency matrix. Since we can 5 '
always trade time for processors, this method gives
an O(n2/p) time algorithm using p processors, for
any p 6 n2/log2n. This algorithm has optimal
speed-up, assuming an ad jacebcy matrix revisited

5.1 The Euler tour technique for trees

..

representation of Ehe input. -We shall not go We presented the Euler tour technique for through the details of the implementation but
merely mention where it differs from the O(1og trees in the paper- A non-trivia1 contribution of this paper is the wide n)-time implementation of the previous section.

applicability of this technique. Let T be an

17

undirected tree having n vertices. In this
concluding section we mention a few functions on T
that the Euler tour technique can be applied €or
their computation. Thereby, we support our claim
that this technique is powerful. A l l algorithms
mentioned in this section run in O(log n) time
using O(n) space and n processors on the RREW PRAM
model of computation.

Function 1. Compute H, a directed version of - -
T which is rooted at some vertex r.

The algorithm was given in Section 3.

Whenever we refer in this paper to the Euler
tour technique on trees we refer to utilizations of
the traversal list given in Section 3. For better
understanding of the amount of information hidden
in this Euler path it is helpful to think about
each directed edge f of H as a left parenthesis and
its anti-parallel edge as a right parenthesis. The
Euler path will then correspond to a legal sequence
of parentheses, where matching pairs of parentheses
will represent the two copies of an edge of T.

Function 2. Compute preorder numbering of the ~-
vertices of H.

Algorithm: See Section 3.

Function 3. Compute postorder numbering of ~-
the vertices of H.

Algorithm: See Section 3.

Function 4 . Compute levels of the vertices of
H. That is, for each vertex in H find the length of
the path from r to it.

--

Finding this algorithm is simple. It is left
to the reader.

Function 4 . Number of descendents of the ~-
vertices in H.

Algorithm: See Section 3.

Function 5. Lowest common ancestor (LCA) of
two vertices in H. We used the Euler path to form a
data-structure which enables retrieval of the LCA
of any pair of vertices in O(log n) time by a
single processor. see [V 841.

Function 6 . low(v) for every vertex v in G .
Where-isdef ined as the the minimum preorder
numberover: v, descendents of v and vertices
adjacent to a descendent of v by an edge of G-T.

Algorithm: See Section 3 .

-- Function 7. high(v) for every vertex v in G.
Where high(~) i s defined as the the maximum
preorder number over: v, descendents of v and
vertices adjacent to a descendent of v by an edge
of G-T.

Algorithm: See Section 3. (Recall that the
computation of the last two functions plays an
important role in our hiconnectivity algorithm).

[A I S 841 and [AV 831 gave (independently from
each other) algorithms for finding Euler tours in
general Ruler graphs. The present paper preceded
both [AIS 841 and [AV 531 and is more fundamental
than them. While there is no apparent way in which
the present paper can henefit from these papers,
[A V 831 indicates how to apply ideas of the present
paper for substantial simplification of the
algorithm for finding Euler tours (with respect to
the algorithm of [AIS 8 4 1)

5.2 Future work

We close this section and the paper with a few
remarks about future work. The parallel tree
computations used in Section 3 may have
applications in other graph algorithms. This
deserves study. A l s o , there are still open
problems concerning parallel hiconnectivity
algorithms. The algorithm of Section 4 , as does
the algorithm of Tsin and Chin [TC 841 , has optimal
speed-up €or dense graphs but not €or sparse ones,
whereas the algorithm of Section 3 is off by a
factor of log n from optimal speed-up. A question
worth exploring is whether there is an O((n+m)/p)
time algorithm using p processors, for p
sufficiently small (say ~':(n+m)/logL or p~
(n+m)/logn.) Such an algorithm is unknown even for
the problem of computing connected components.

Suppose that an algorithm of time O((n+m)/p)
could be found for the problem of computing
connected components. Then the implementation of
Section 3 implies a block-finding algorithm of time
O((n1og n + m)/p) using p < nlog n + m processors,
provided we are given a proper input
representation. In order to see this, consider the
following representation o f the input graph for the
block-finding problem. The vertex set is V =
{1,2, ..., n}. Each edge {i,j} is represented by two
directed edges (i,j) and (j,i). The 2m directed
edges of the graph appear in an ascending
lexicographic order in a vector of length 2m.
(That is, (il,jl) < (i2,!2) if il < I2 or il =.i2
and j, < j2. Each vertex 1 has a pointer to its
first outgoing edge. The implementation of Section
3 still requires the following modifiction. Recall
the construction of the list of outgoing edges in
the tree for every vertex. This was done using
doubling which required O(log n) time using only
O(m/log m) processors. Instead, we construct a
sorted vector (similar to the input vector) of
length 211-2 which contains all directed edges of
the tree in time O(log n) using O(m) processors:
For each directed edge in the tree we need to find
its serial number relative to the other directed
edge of the tree. We use a balanced binary tree

18

with 2m leaves, one for each input directed edge,
to guide the computation, which is a standard
partial sum computation where each active leaf
enters one and gets in return its serial number
relative to other active leaves. This is similar
to the computation following Step 1 of the previous
section. A similar remark applies to the
computation of locallow(j) (just before the
construction of the tree).

REFERENCES

[AIS 841 B. Awerbuch, A. Israeli and Y. Shiloach,
"Finding Euler circuits in logarithmic parallel
time", Proc. Sixteenth ACM Symp. on Theory of
Computing, 249-257.

[AKS 831 M. Ajtai, J. Koml6s, and E. Szemeredi, "An

AV

[Be

[BH

O(n log n) sorting network," Proc. Fifteenth
ACM Symp. on Theory of Computing (198- -

841 M. Atallah and U. Vishkin, "Finding Euler
tours in parallel", preprint. To appear in
JCSS.

731 C. Berge, Graphs and Hypergraphs, North-
Holland, Amsterdam, 1973.

821 A. Borodin and J.E. Hopcroft, "Routing,
merging and sorting on parallel models of
computation," Proc. Fourteenth e Symp. 0"
Theorv of ComDutinr! (1982). 338-334.

[CLC 811 F.Y. Chin, J. Lam, and I. Chen, "Optimal
parallel algorithms for the connected component
problems," Proc. 1981 International Conf. 0"
Parallel Processing (1981), 170-175.

79a] D .M. Eckstein, "Simultaneous memory
access," Technical Report TR-79-6, Computer
Science Department, Iowa State University,
Ames, Iowa, 1979.

79bl D.M. Eckstein, "BFS and biconnectivity,"
Technical Report TR-79-11, Computer Science
Department, Iowa State University, Ames, Iowa,
1979.

79bl F. Harary, Graph Theory, Addison Wesley,
Reading, Mass., 1969.

[HCS 791 D.S. Hirschberg, A.K. Chandra, and D.V.
Sarwate, "Computing connected components on
parallel computers," Comm. ACM 22 (1979).

[M 831 N. Megiddo, "Applying parallel computation
algorithms in the design of serial algorithms",
JACM 30,4(1983), 852-865.

~

[RV 831 J. Reif and L.J. Valiant, "A logarithmic
time sort for linear size networks", Proc.
Fifteenth= Symposium on Theory of computing,
1983, pp. 10-16.

[S J 811 C. Savage and J. Ja'Ja', "Fast, efficient
parallel algorithms for some graph problems,"
SIAM J. Comput. 10 (19811, 682-691. ---

[SV 811 Y. Shiloach and U. Vishkin, "Finding the
maximum, merging and sorting in a parallel
computation model," J- Algorithms 2 (19811,
88-102.

[SV 821 Y. Shiloach and U. Vishkin, "An O(log n)
parallel connectivity algorithm," J-
Algorithms 3 (1982), 57-63.

[Ta 721 R.E. Tarjan, "Depth-first search and
linear graph algorithms," SIAM J. Comput. 1
(1972), 146-160.

[Ta 741 R.E. Tarjan, "Finding dominators in
directed graphs,'' J- Comput. 3 (19741,
62-89.

[Ta 821 R.E. Tarjan, "Graph partitions defined by
simple cycles," Technical Memorandum, Bell
Laboratories, Murray Yill, New Jersey, 1982.

[TC 841 Y.H. Tsin and F.Y. Chin, "Efficient
parallel algorithms for a class of graph
theoretic problems," SIAM J, Comput. 13(1984),
580-599.

[Th 831 C.D. Thompson, "The VLSI complexity of
sorting", IEEE Trans. Comput., (December
1983).

[Ts 821 Y.H. Tsin, "A generalization of Tarjan's
depth first search algorithm for the
biconnectivity problem," Dept. of Computing
Science, University of Alberta, Edmonton,
Alberta, Canada, 1982.

[TV 831 R.E. Tarjan and U. Vishkin, "An efficient
parallel biconnectivity algorithm," Technical
Report #69(revised), Computer Science
Department, New York University, New York, New
York, 1983. To appear in SIAM J. Comp.

[V 811 U. Vishkin, "An optiinal parallel
connectivity algorithm," Technical Report RC
9149, IBM Thomas J. Watson Reisearch Center,
Yorktown Heights, New York, 1981. To appear in
Discrete Applied Mathematics.

19

[V 8 3 a] U. Vishkin, "Implementation of simultaneous [V 841 U. Vishkin, "An efficient parallel strong
memory address access in models that forbit orientation", Technical Qeport #109 , Computer
it,"& Algorithms 4 (1 9 8 3) , 45-50. Science Department, New York University, New

York, New York, 1984.

[V 83bl U. Vishkin, "O(1og n) and optimal parallel
biconnectivity algorithms," Technical Report [Wi 751 Winograd, S., "On the evaluation of
#69, Computer Science Department, New York certain arithmetic expressions", JACM 22,
University, New York, New York, 1983. 4 (1 9 7 5) , pp. 477-492.

[V 8 3 c] 1J. Vishkin, "Synchronous parallel [Wy 791 J.C. Wyllie, "The complexity of parallel
computation - a survey", Technical Report 871 , computation", Technical Report TR 79-387,
Computer Science Department, New York Department of Computer Science, Cornell
University, New York, New York, 1983. University, Ithaca, New York, 1979.

1 l(1.11)

(a

2 3

Figure 1 . (a) An undirected graph.
(b) Its blocks. Vertices 4,5,6

and 7 are cut vertices.
Edges { 6 , 7 1 , { 5 , 1 0 1 , and
{ 5 , 1 1) are bridges.

(11.11)
8 (8 ,

Figure 2.
(a) A spanning tree of the graph in Figure 1.

Dashed edges are non-tree edges. Vertices
are numbered in preorder. Numbers in
parentheses are the low and high number
of each vertex.

(b) The auxiliary graph 6 ' .

20

